Cheat Sheet of Autoencoder and Variational Autoencoder for OSINT

Autoencoders are a type of neural network that can be used for dimensionality reduction, anomaly detection, and generative modeling. Variational autoencoders (VAEs) are a specific type of autoencoder that use a probabilistic approach to learn compressive representations.

Autoencoder

Variational Autoencoder (VAE)

Applications in OSINT

Implementation in Python

Autoencoders and VAEs can be implemented using popular deep learning frameworks such as Keras or TensorFlow. The following code snippet demonstrates a simple autoencoder implementation in Python:

import numpy as np from keras.layers import Input, Dense class Autoencoder: def __init__(self, input_dim, latent_dim): self.input_dim = input_dim self.latent_dim = latent_dim self.encoder = self._build_encoder() self.decoder = self._build_decoder() def _build_encoder(self): encoder = Input(shape=(self.input_dim,)) x = Dense(64, activation='relu')(encoder) x = Dense(self.latent_dim)(x) return encoder, x def _build_decoder(self): decoder = Input(shape=(self.latent_dim,)) x = Dense(64, activation='relu')(decoder) x = Dense(self.input_dim)(x) return decoder, x def fit(self, X_train, epochs=100): self.encoder.trainable = False self.decoder.trainable = True for epoch in range(epochs): with tf.GradientTape() as tape: output = self.decoder(self.encoder(X_train)) loss = metrics.mean_squared_error(X_train, output) gradients = tape.gradient(loss, self.decoder.trainable_variables) optimizer.apply_gradients(zip(gradients, self.decoder.trainable_variables)) def call(self, input_data): encoder_output, x = self.encoder(input_data) return self.decoder(x) # Example usage input_dim = 784 latent_dim = 128 autoencoder = Autoencoder(input_dim, latent_dim) X_train = np.random.rand(100, input_dim) # Replace with your own data autoencoder.fit(X_train, epochs=10)